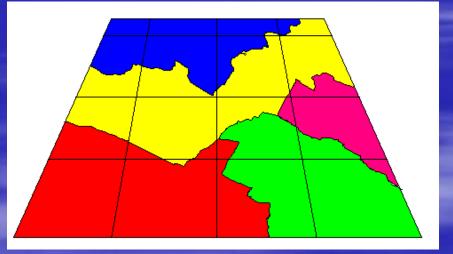
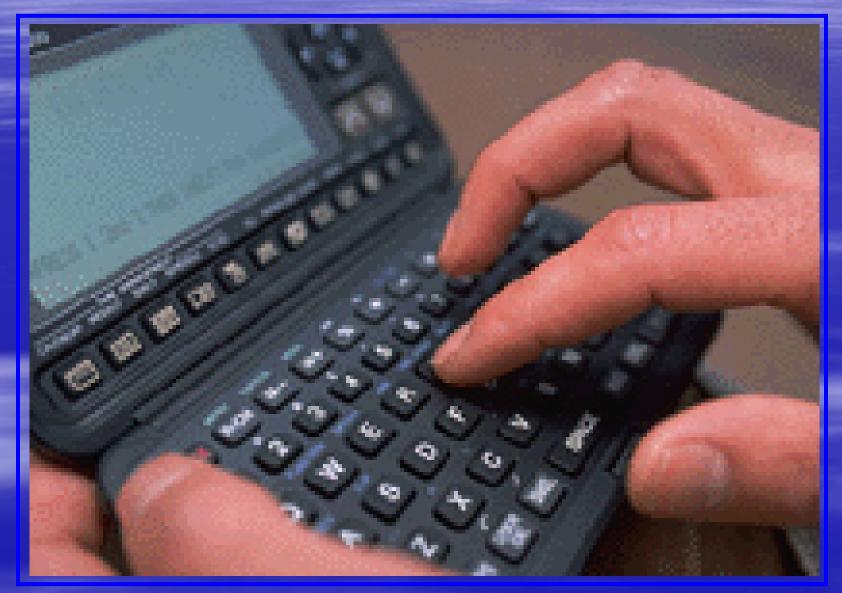
BASIC FORMULATION OF FLUIDS

Jim May J. May Equipment/ ATA, Inc. Arlington, TX Fluid Fertilizer Foundation Dec 8-9, 2015 Louisville, KY


DE

PRECISION STARTS HERE !!

PRESCRIPTION FORMULATION AND PRODUCTION The First Step In Precision,


Site Specific Application Is To Produce a High Quality Prescription Blend.

The Correct Analysis and Quality Product

Repeated Stopping To Cleaning Nozzles or Strainers Defeats Precision Application POOR FORMULATION PRODUCES POOR PRODUCT

ADD, SUBTRACT, MULTIPLY & DIVIDE

UNDERSTANDING THE TERMS

FERTILIZER GRADE or ANALYSIS: The plant nutrient content of the product expressed as a percent by weight.

> N-P-K 3-9-27

3%Nitrogen, 9% Phosphorus (P2O5), 27% K-Potassium Total 39% Plant Food 61% Non-Nutritive Materials

FORMULATE TO A TON

- 1 TON, 2,000 POUNDS
- A TON FORMULA CAN BE EXTENDED OR REDUCED TO FIT ANY BATCH SIZE
- MIXERS READOUT IN POUNDS, BUT HAVE A TON RATING
- 10 TON BATCH IS 10 X EACH INGREDIENT
- IF YOU CALL ME WITH A PROBLEM, GIVE ME YOUR TON FORMULA, NOT BATCH POUNDS

USE A "FORMULATION SHEET"

- DO NOT "FORMULATE" ON A PIECE OF SCRATCH PAPER
- USE A DOUBLE CHECK FORM
- COPIES OF THE ONE WE USE ARE AVAILABLE ON REQUEST
- NO FORM, DRAW A TABLE FORM BEFORE STARTING
- DOUBLE CHECK YOUR MATH !!!

J. May Equipment Group J. May Equipment GroupFORMULATIONCustomer:Field #/ Location

FORMULATION WORKSHEET

Date:____

	Number of Acres Total Pounds Required			nds Per A					Required	1 to 3 Ammonia N to P2O5 Ratio				
Total Poun	ds Required		÷ 2,000	0 = To	tal Tons÷	Batch Siz	ze=	Number	Batches	Total	P2O5 ÷ 3=		Total	Ammonia N
				GRA	DE			Total	% Units	Less MAP/DAP N				
		Ν	Ρ	K						Total			N from	n NH3/Aqua
		%	%	%	%	%	%	* Cred	lit Equiv.					
Material	Pounds	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb. H2O	Lb. Clay	Cost/ Ton	Cost / Lb.	Total Cost	Pounds/ Batch	Scale Stop
TOTALS														

TEMPERATURE CALCULATION

	HE	EATERS		VS		COOLERS					
Pounds	Product	Total BTU		Pounds	Product	BTU/ Lb.	Total BTU				
	NH3	1750				Urea	< 110				
	Aqua	1400 / Lb. NH3				Ammonium Nitrate	< 145				
	Phos Acid	100				Ammonium Sulfate	< 110				
	Steam	1000				Potash	< 100				
	160° Water	120									
	Total Heaters						Total Coolers				

Total Heaters		
Less Total Coolers		
Net BTU		
Net BTU ÷ (Batch Weight X .8) =	Degrees Temperature Change	°F

Starting Water/ Batch Temp + Change = Final Temp. $(55^{\circ}+10^{\circ}=65^{\circ}F)$ Example: +16,000 Net BTU ÷ (2000x.8) 1600 = +10° F

*H2O CREDIT % EQUIVALENT

32-0-0	20%	28-0-0	25%	Aqua	70%	10-34-0	25%	12-0-0-26	25%
10-30-0	20%	Phos A	cid	15%	High K	-Base Gra	ades 1	15%	

FIGURIN' IT OUT !!

- BASIC MATH
- ADD
- SUBRTACT
- MULTIPLY
- DIVIDE
- FORMULATION IS KNOWING WHEN TO DO WHICH

DIVISION= A PILE OF SOMETHING

- PHYSICAL SIZE OF A MATERIAL USED IN THE FORMULA
- POUNDS OF PLANT FOOD, DIVIDED BY THE PRECENTAGE CONCENTRATION OF THE RAW MATERIAL= PHYSICAL POUNDS
- 75 K ÷ .62 (0-0-62) = 121 Pound Pile

MULTIPLYING=WHAT IS IN THE PILE

- YOU CAN NOT SEE THE PLANT FOOD IN THE PILE
- A PRECENTAGE OF THE PHYSICAL PILE IS THE ACTUAL NUTRIENT CONTENT

SIMPLE FORMULA CUT 32-0-0 TO 28-0-0 HOW MUCH WATER? N-P-K (1 TON) 28% OF 2,000=560 Nitrogen 28-0-0 560-0-0 ($560 \div .32 = 1,750$ POUNDS) WATER 250 32-0-0 1,750 (2,000 MINUS 1,750= 250 POUNDS WATER) TOTAL 2,000

FORMULATE TO AN ANALYSIS

PREDETERMINED ANALYSIS Ν K P 10 10 5 ANALYSYIS IS 5% NITROGEN 10% PHOSPHATE (P₂O₅) 10% K – POTASSIUM FORMULATE TO A TON, 2,000 POUNDS

J. May *Equipment Group* Customer: JOHN SMITH

FORMULATION WORKSHEET

Field #/ Location Jones Place

Number of /					cre = 20,00				ds Requ				nonia			
Total Pound	is Required	20,000 ÷	+2,000 = 7	10 I otal	Ions÷ Bate	h Size ('	10)= 1	Nu	mber Ba	atches	Total F	2O5 ÷ 3	=		Total	Ammonia N
				G	RADE				Total % Units		Less MAP/DAP N		N			
		N	P	K					25%		Total				N from	n NH3/Aqua
		5	10 %	10 %	» %	%		%	* Credi	t Equiv.			·	· ·		
Material	Pounds	Lь. 100	Lb. 200	200 ^{Lb}	. Lb.	Lb.		Lb.	Lb. H2O	Lb. Clay	Cost/ Ton	Cost / Lb.	Total Cost		nds/ `h	Scale Stop
Water	960								1120		1011	20.		960		9600
0-0-62	323			200										323	0	12830
10-34-0	588	58.8	200											588	0	18710
32-0-0	129	41.2												129	0	20000
TOTALS	2000	100	200	200										200	00	
					TEMPE			LCI	JLATIC	N						
		HEAT				V	S					DLERS				
Pounds	Produ		TU/ Lb.		Total BTU			Pou	Pounds Product).	То	tal BTU
	NH3		750							Urea	Luna Milda		< 110			

Aqua	1400 / Lb. NH3]	Ammonium Nitrate	< 145	
Phos Acid	100]	Ammonium Sulfate	< 110	
Steam	1000]	Potash	< 100	
160° Water	120]			
	Total Heaters		Т	otal Coolers	

Total Heaters		
Less Total Coolers		
Net BTU		
Net BTU ÷ (Batch Weight X.8) = Degrees Temperature Change	°F

Example: +16,000 Net BTU + (2000x.8) 1600 = +10° F Starting Water/ Batch Temp + Change = Final Temp. (55°+10°= 65°F)

*H2O CREDIT % EQUIVALENT

								12-0-0-26	25%
10-30-0	20%	Phos A	\cid	15%	High K	-Base Gra	ades '	15%	

SUSPENSIONS

- SAME FORMULATION PROCEDURE
- THEY HAVE SOME SOLIDS THAT TEND TO SETTLE OUT
- REDUCE PARTICLE SIZE OR INCREASE VISCOSITY
- MOST DO BOTH
- SUSPENSION AGENT "ATTAPULGITE CLAY"
- SUSPEND THE SOLIDS WITH CLAY
- CLAY FORMS A MATRYX LIKE HAY STRAW
- PARTICLES SET ON THE "STRAWS"
- CLAY CONTENT DETERMINED BY PLANT FOOD CONCENTRATION AND EXPERIENCE

CLAY RULE OF THUMB LIQUID CLAY IS ONLY 25% CLAY BUT TWICE AS EFFECTIVE AS DRY CLAY

PERCENT PLANT FOOD	% DRY CLAY	% LIQUID CLAY
35% TO 40%	1%	2%
30% TO 34%	1.5%	3%
24% TO 29%	2%	4%

COLD MIX SUSPENSION

- USE A 10-30-0 PHOSPHATE BASE GRADE
- A SUSPENSION AGENT IS REQUIRED, CLAY DRY OR LIQUID
- TAKE CREDIT FOR THE BASE GRADE CLAY CONTENT
- CLAY BEFORE NITROGEN SOLUTION

J. May Equipment Group

FORMULATION WORKSHEET

Date:

Customer: Charles Smith Field #/ Location Field #7,

Number of		X 600			e = 24,000		Total Po			1 to	o 3 Ammo	onia N	to P2O5	Ratio
Total Poun	ds Required	24,000	÷ 2,000 =	12 Total	Tons÷ Ba	tch Size=	1 Num	ber Bat	ches	Total	P2O5 ÷ 3=		Total	Ammonia N
				GR/	ADE			Total % Units		Less N	Less MAP/DAP N			
		Ν	Р	K				36%		Total			N from	n NH3/Aqua
		% 10	8 8	% 18	%	%	%	* Cred	lit Equiv.				·	
Material	Pounds	Lb. 200	Lb. 160	Lb. 360	Lb.	Lb.	Lb.	Lb. H2O	Lb. Clay	Cost/ Ton	Cost / Lb.	Total Cost	Pounds/ Batch	Scale Stop
WATER	406							406					4872	4872
10-30-0	533	53.3	160					106	8				6396	11268
CLAY	22												264	11532
32-0-0	458	146.7						92					5496	17028
0-0-62	581			360									6972	24000
TOTALS	2000	200	160	360				604						24000

TEMPERATURE CALCULATION

	HE	EATERS	_	VS		COOLER	COOLERS		
Pounds	Product BTU/ Lb.		Total BTU		Pounds	Product	BTU/ Lb.	Total BTU	
	NH3	1750				Urea	< 110		
	Aqua	1400 / Lb. NH3				Ammonium Nitrate	< 145		
	Phos Acid	100				Ammonium Sulfate	< 110		
	Steam	1000				Potash	< 100		
	160° Water	120							
		Total Heaters					Total Coolers		

Total Heaters		
Less Total Coolers		
Net BTU		
Net BTU ÷ (Batch Weight X .8) =	Degrees Temperature Change	°F

Example: +16,000 Net BTU ÷ (2000x.8) 1600 = +10° F *H20 CREDIT % EQUIVALENT

Starting Water/ Batch Temp + Change = Final Temp. $(55^{\circ}+10^{\circ}=65^{\circ}F)$

32-0-0	20%	28-0-0	25%	Aqua	70%	10-34-0	25%	12-0-0-26	25%
10-30-0	20%	Phos Ac	cid 1	15%	High K	-Base Gra	ades 1	15%	

HOT MIX SUSPENSION

- 10-30-0 PHOSPHATE BASE GRADE
 DRY CLAY, 1 1/2%
- CAUTION, 1 TO 3 AMMONIA NITROGEN TO P₂O₅ RATIO APPLIES
- BEST SEQUENCE
- CALCULATE THE HEAT OF REACTION

J. May Equipment Group FORMULATION WORKSHEET Customer: INVENTORY Field #/ Location

Date: 12-8-2015

Number of Acres Х Pounds Per Acre = Total Pounds Required 1 to 3 Ammonia N to P2O5 Ratio Number Batches **Total Pounds Required** ÷ 2.000 = Total Tons+ Batch Size= Total P2O5 ÷ 3= Total Ammonia N 200 GRADE Total % Units Less MAP/DAP N 126 40% Κ Total 74 N from NH3/Aqua Ν Ρ % % % % % % * Credit Equiv. 0 10 30 Lb. Lb. Lb. Lb. Lb. Lb. Pounds/ Material Pounds Lb. Lb. Cost/ Cost / Total Scale Stop 200 600 0 Clay H₂O Ton Lb. Cost Batch WATER 726 11-52-0 577 63 300 NH3 45 37 11-52-0 577 63 300 NH3 37 45 CLAY 30 TOTALS 2000 200 600 0 **TEMPERATURE CALCULATION** HEATERS COOLERS VS BTU/ Lb. Total BTU BTU/ Lb. Total BTU Pounds Product Pounds Product NH3 1750 157500 < 110 90 Urea 1400 / Lb. NH3 Ammonium Nitrate < 145 Aqua

Phos Acid100Ammonium Sulfate< 110</th>Steam1000Potash< 100</td>160° Water120Total Heaters157500Total Heaters157500

Total Heaters	157500	
Less Total Coolers		
Net BTU	157500	
Net BTU ÷ (Batch Weight X.8) = Degrees Temperature Change	+98 ° F

Example: +16,000 Net BTU ÷ (2000x.8) 1600 = +10° F Starting Water/ Batch Temp + Change = Final Temp. (55°+10°= 65°F)

*H2O CREDIT % EQUIVALENT

32-0-0	20%	28-0-0	25%	Aqua	70%	10-34-0	25%	12-0-0-26	25%
10-30-0	20%	Phos A	\cid	15%	High K	-Base Gra	ades '	15%	

FORMULATE TO AN ACRE

- EVERYTHING IS STILL %
- SIMPLE STEPS
- #1 ADD UP THE PLANT FOOD (N+P+K)
- #2 PICK A CONCENTRATION
- #3 TOTAL PLANT FOOD ÷ CONCENTRATION
 = RATE PER ACRE
- #4 EACH NUTRIENT (N-P-K) ÷ RATE PER ACRE= ANALYSIS
- #5 FORMULATE TO THE ANALYSIS, 1 TON

QUICK WITH CUSTOMER, EASY FOR THE MIX PLANT

- SOIL TEST CALL FOR:
- 180 Pounds Of N
- 90 Pounds Of P
- 130 Pounds Of K
- 400 Nutrient Pounds Per Acre
- 40% Concentration
- 400 ÷ .40 = 1000P/A

180 ÷ 1000 P/A= .18N

- 90 ÷ 1000 P/A =.09P
- 130 ÷ 1000 P/A = .13K
- Analysis To Formulate
 18-9-13
 - 18-9-13
- Every pound of the product will contain
 18%N-9%P-13%K

J. May Equipment Group

FORMULATION WORKSHEET

Date: 12-8-2015

Customer: Billy Williams Field #/ Location #10

Number of		25 X 100		nds Per A					Required	1 to	3 Ammo	onia N	to P2O5	Ratio
Total Poun	ds Required	25000÷	÷ 2,000 = 1	12.5 To	tal Tons÷	Batch Siz	ze= 1	Numbe	r Batches	Total	P2O5 ÷ 3=		Total	Ammonia N
				GR/	ADE			1	% Units	Less	MAP/DAPN			
		N	P	K				40%		Total			N fron	n NH3/Aqua
		[%]	9 %	13 %	%	%	%	* Cred	lit Equiv.					
Material	Pounds	LЬ. 360	ь. 180	Lb. 260	Lb.	Lb.	Lb.	Lb. H2O	Lb. Clay	Cost/ Ton	Cost/ Lb.	Total Cost	Pounds/ Batch	Scale Stop
WATER	92												1150	1150
32-0-0	960	307.1											12000	13150
0-0-62	419			260									5237	18387
10-34-0	529	52.9	180										6613	25000
TOTALS	2000	360	180	260					+					25000

TEMPERATURE CALCULATION

	HE	EATERS		VS		COOLERS						
Pounds	Product	BTU/Lb.	Total BTU		Pounds	Product	BTU/Lb.	Total BTU				
	NH3	1750		1		Urea	<110					
	Aqua	1400/Lb. NH3		1		Ammonium Nitrate	<145					
	Phos Acid	100		1		Ammonium Sulfate	<110					
	Steam	1000		1		Potash	<100					
	160° Water	120		1								
		Total Heaters		1			Total Coolers					

Total Heaters		
Less Total Coolers		
NetBTU		
Net BTU ÷ (Batch Weight X.8) = Degrees Temperature Change	°F

Example: +16,000 Net BTU ÷ (2000x.8) 1600 = +10° F

Starting Water/Batch Temp + Change = Final Temp. (55°+10°=65°F)

*H2OCREDIT % EQUIVALENT

								12-0-0-26	25%
10-30-0	20%	Phos A	cid 1	5%	High K	-Base Gra	ades	15%	

ONE MORE ACRE FORMULA

- SOYBEAN BLEND
- 15 Pounds Of N
- 45 Pounds Of P
- 110 Pounds Of K
- 170 Nutrient Pounds Per Acre
- 40% Concentration
- 170 ÷ .40 = 425P/A

- 15 ÷ 425 P/A= .035N
- 90 ÷ 425 P/A =.106P
- 110 ÷ 425 P/A =.259K
- Analysis To Formulate
- **3.5-10.6-25.9**
- Every pound of the product will contain
- 3.5%N-10.6%P-25.9%K

EASY BLEND

- ROUND OFF THE 3.5-10.6-25.9
- FORMULATE TO 4-11-26
- REAL FORMULATORS GO FOR THE DECIMAL POINTS
- IT IS JUST AS EASY TO FORMULATE TO THE EXACT NEED
- PRECISION AGRICULTURE STARTS AT THE FORMULATION SHEET

J. May Equipment Group

FORMULATION WORKSHEET

Customer: Ted Johnson Field #/ Location Soybeans

Number of		Х		Inds Per A					Required	1 to	o 3 Amm	onia N	to P2O5	Ratio
Total Poun	ds Required	l	÷2,00	00 = To	otal Tons:	Batch Si	ze=	Number	Batches	Total	P2O5 ÷ 3=		Total	Ammonia N
				GR/	ADE			Total	% Units	Less N	IAP/DAP N			
		Ν	Р	K				40%		Total			N from	n NH3/Aqua
		% 3.5	[%]	25.9 [%]	%	%	%	* Cred	lit Equiv.					
Material	Pounds	Lb. 70	Lb. 212	Lb. 518	Lb.	Lb.	Lb.	Lb. H2O	Lb. Clay	Cost/ Ton	Cost / Lb.	Total Cost	Pounds/ Batch	Scale Stop
WATER	438													
10-30-0	707	70.7	212						10					
CLAY	20								20					
0-0-62	835			518										
TOTALS	2000	70.7	212	518					30					
_					TEMPER	ATURE	CALC	ULATIO				l	1	l

	HE	EATERS		VS		COOLERS						
Pounds	Product	BTU/ Lb.	Total BTU		Pounds	Product	BTU/ Lb.	Total BTU				
	NH3	1750]		Urea	< 110					
	Aqua	1400 / Lb. NH3				Ammonium Nitrate	< 145					
	Phos Acid	100				Ammonium Sulfate	< 110					
	Steam	1000				Potash	< 100					
	160° Water	120										
		Total Heaters					Total Coolers					

Total Heaters		
Less Total Coolers		
Net BTU		
Net BTU ÷ (Batch Weight X .8)	= Degrees Temperature Change	°F

Example: +16,000 Net BTU ÷ (2000x.8) 1600 = +10° F *H20 CREDIT % EQUIVALENT

Starting Water/ Batch Temp + Change = Final Temp. $(55^{\circ}+10^{\circ}=65^{\circ}F)$

32-0-0	20%	28-0-0 25	% Aqua	70%	10-34-0	25%	12-0-0-26	25%
10-30-0	20%	Phos Acid	15%	High M	K-Base Gra	ades 1	15%	

REVIEW FOR PER ACRE

- EVERYTHING IS STILL %
- SIMPLE STEPS
- #1 ADD UP THE PLANT FOOD (N+P+K)
- #2 PICK A CONCENTRATION
- #3 TOTAL PLANT FOOD ÷ CONCENTRATION
 = RATE PER ACRE
- #4 EACH NUTRIENT (N-P-K) ÷ RATE PER ACRE= ANALYSIS
- #5 FORMULATE TO THE ANALYSIS, 1 TON

FORMULATION FOR SUCCESSFUL CROPS

TEXAS COTTON

FORMULA FOR SUCCESS

- CAN YOU GIVE 100%
- HOW ABOUT THOSE THAT SAY "110%"
- HERE IS SOMETHING TO THINK ABOUT!!
- The Formula: If each letter of the alphabet is represented by a number
- ABCDEFGHIJKLMNOPQRSTUVWXYZ
- **1** 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

BY THE NUMBERS

- HARD WORK 8 1 18 4 23 15 18 11 = 98%
- KNOWLEDGE 11 14 15 23 12 5 4 7 5 = 96%
 BUT,
- ATTITUDE 1 20 20 9 20 21 4 5 = 100%
- AND,
- BULLS___ 2 21 12 12 19 8 9 20 = 103%
- So, it stands to reason that Hard Work and Knowledge will only get you close. Attitude will get you there, but Bulls___ will get you over the top !!!!

KEY FORMULA TO SUCCESS

LOOK HOW FAR... A___KISSING 1 19 19 11 9 19 19 9 14 7 = 118% WILL TAKE YOU !!!!!

Just when you think you will never get it,

It just comes to you!!!!

Fluid Fertilizer Foundation

Louisville, KY Dec 8-9, 2015

Please click to return to the Main Menu and close the current presentation